Synthesis of substituted styrenes and stilbenes mediated by palladium on zirconia

Hanumant B. Boratea*, Deepa K. Dumbrea, Radhika D. Wakharkara and Vasant R. Choudharyb

^aDivision of Organic Chemistry and ^bChemical Engineering and Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India

Palladium on zirconia has been found to be an effective catalyst for the synthesis of various substituted styrenes and stilbenes, including biologically active natural products, by reaction of aryl halides with olefins.

Keywords: stilbenes, styrenes, heterogeneous catalyst, palladium on zirconia

Substituted stilbenes constitute an important group of biologically active compounds exhibiting significant anticancer activity. 1-6 Some of the stilbenes exhibit antifungal activity⁷ while some are used as intermediates in the synthesis of, for example, fluorescent brightners, 8 dyes, 8 antibiotics, 9 cyclooxygenase-2 inhibitors. 10 The significant biological activity exhibited by stilbenes keeps on attracting the synthetic organic chemistry community to explore alternative methods for their synthesis to make these compounds available in larger quantities for biological studies. Methods for the preparation of stilbenes include the Wittig reaction, 1,2,6,11-12 the Heck reaction, 13 reaction of benzyl sodium and benzaldehyde, 8 reductive metalation of benzaldehyde dimethyl acetal, 9 LDAmediated condensation of benzyl bromides, 14 condensation of benzaldehydes and nitrotoluenes, 15 and Knoevenagel condensation. 16

The Heck reaction is an important reaction for forming the C–C bond and is accomplished by employing various homogeneous and heterogeneous catalysts containing different metals. The heterogeneous catalysts offer advantages including mild reaction conditions, ease of work-up and reusability of catalyst, which are important in view of environmental concerns and the overall efficiency of the processes. There are a number of reports about the use of heterogeneous catalysts for the Heck reaction including recent examples such as LDH-supported nanoplatinum, ¹⁷ chitosan-based heterogeneous catalysts, ¹⁸ Pd-SAPO-31, ¹⁹ Pd-zeolites, ²⁰ Pd supported on metal oxides and zeolites, ²¹ silica supported palladium catalysts²² and Ni, Co, Cu and Mn heterogeneous catalysts. ²³

Zirconia-supported palladium catalysts have been studied extensively for removing volatile organic compounds from industrial processes and automobile exhaust emissions by catalytic oxidation to harmless products like water and carbon dioxide.²⁴⁻²⁸ They are also studied for various other purposes including hydrodechlorination wherein polychlorinated organic substances, which are pollutants, can be converted into useful products.²⁹⁻³⁰ In continuation of our research interest in the synthesis of heterogeneous catalysts and their use in organic transformations,³¹⁻³⁶ we have found that a heterogeneous catalyst containing palladium on zirconia³⁷ is effective in catalysing the reaction between aryl halides and olefins to afford styrenes and stilbenes in good yields and the results are reported here.

Initially, acrylamide was reacted with 4-iodoanisole in the presence of a palladium on zirconia catalyst and various bases in different solvents at a range of temperatures in an attempt to form the desired substituted styrene.

Dimethyl formamide was found to be the best solvent; *N*-methyl pyrrolidone and xylene gave 5–20% conversion of starting materials while there was no reaction in toluene, ethanol or water (Table 1).

Table 1 Influence of solvent used during arylation of $CH_2=CH-CONH_2$ with 4-iodoanisole in presence of the catalyst (Pd/ZrO_2) and K_2CO_3 at reflux

Solvent	Reaction time/h	Yield of 4-methoxy- trans-cinnamic amide (%)		
DMF	4	80		
H ₂ O	10	No reaction		
1,4 -Dioxan	12	No reaction		
NMP	12	20		
Xylene	12	5		
Ethanol	12	No reaction		
Toluene	12	No reaction		

The work-up involved filtration from catalyst, dilution of the organic layer with water, extraction with ethyl acetate, concentration and purification by column chromatography.

Among the bases tried (sodium acetate, sodium carbonate, triethylamine, pyridine and potassium carbonate), potassium carbonate was found to be most effective and convenient to use. The reaction was found to be temperature dependent (Table 2) and stirring under reflux was found to give the best results.

The catalyst was washed with acetone, dried and reused without significant decrease in the yield (Table 3). The observed increase in the reaction time for the successive reuse of the catalysts is expected because of a small loss of the catalyst during its processing (i.e. filtration and drying).

The study of leaching of palladium by the reported method³⁸ showed that leaching was not observed (*i.e.* <0.1 ppm Pd) from the catalyst in the reaction. Palladium leaching (if any) from the palladium catalyst in the reaction medium, after the reaction, was determined by adding an aqueous ethanolic dimethylglyoxime (1%) solution to the reaction mixture (after separating the catalyst) and observing a yellow-orange precipitate of palladium dimethylglyoximate which indicates

Table 2 Influence of temperature during the arylation of CH_2 =CH-CONH $_2$ with 4-iodoanisole in presence of the catalyst (Pd/ZrO $_2$) and K_2CO_3 in DMF

yield%
ction
ction
)
)

Table 3 Influence of reuse of the catalyst during the arylation of CH_2 =CH- $CONH_2$ with 4-iodoanisole in presence of the catalyst (Pd/ZrO_2) and K_2CO_3 in DMF

Reuse of catalyst	Reaction time/h	Yield/%	
Reuse I	4	 79	
Reuse II	4	78	
Reuse III	5	77	
Reuse IV	5.5	76	

^{*} Correspondent. E-mail: hb.borate@ncl.res.in

the presence of palladium (in trace amounts) in the reaction mixture. In all the experiments, no yellow orange precipitate was observed. This indicated the absence of Pd leaching from the catalyst in the reaction.

When various aryl halides were reacted with acrylamide, alkyl acrylate or acrylonitrile in dimethyl formamide in presence of palladium on zirconia catalyst (10% by weight of aryl halide) and K_2CO_3 at 140 °C under a nitrogen atmosphere (Scheme 1), the corresponding styrenes were obtained in good yields (Table 4).

Aryl iodides gave the best yields, bromides gave reasonable yields while chlorides afforded negligible yields. A number of substituted styrenes were prepared to generalise the method. The encouraging results obtained in the preparation of styrenes were explored further to synthesise substituted stilbenes which exhibit a wide variety of biological activity (Scheme 2). The substituted styrenes, used as starting materials for these reactions, were prepared³⁹ by Wittig reaction of the corresponding aldehydes and subjected to the reaction with aryl halides as described before to afford the desired stilbenes in good yields.

Comparison of the spectroscopic data with reported values showed that the products obtained had *trans* geometry. The probable mechanism of this reaction is shown in Scheme 3.

In conclusion, we have found that palladium on a zirconia catalyst is useful for the synthesis of various styrenes and stilbenes. The reaction conditions are amenable to scale

Scheme 1

R'= COOMe, CONH2, CN

Scheme 2

up making the present method suitable to make available the substituted stilbenes in larger quantities for detailed biological activity studies. Also, the present work employs a heterogeneous catalyst that is easily removed from the product simply by filtration and can be recovered and reused.

Experimental

All chemicals were reagent grade and purchased from Aldrich or Lancaster Synthesis. All reactions were performed under an

 Table 4
 Preparation of styrenes and stilbenes

Table 4	Preparation of styrenes and stilbenes					
Entry no.	Substrates used		Time/h	Product ^a	Yield/%	
	Aryl halide	Olefin				
1	4-lodoanisole	Acrylamide	4	4-Methoxy- <i>trans</i> -cinnamic amide	80	
2	4-lodoanisole	Methyl acrylate	4	Methyl 4-methoxy-trans-cinnamate	75	
3	4-lodoanisole	Acrylonitrile	3.5	4-Methoxycinnamonitrile	70	
4	4-Bromoacetophenone	Methyl acrylate	5	Methyl 4-acetyl-trans-cinnamate	75	
5	4-lodoanisole	Methyl 3-(4-methoxy-		Methyl 3,3-bis-(4-methoxy-		
		phenyl)-acrylate	6	phenyl)-acrylate	70	
6	lodobenzene	Styrene	7	trans-Stilbene	82	
7	Bromobenzene	Styrene	15	trans-Stilbene	65	
8	Chlorobenzene	Styrene	30	trans-Stilbene	5	
9	3-Bromoacetophenone	Styrene	9	3-Acetyl- <i>trans</i> -stilbene	65	
10	4-Bromoacetophenone	Styrene	7	4-Acetyl- <i>trans</i> -stilbene	68	
11	4-lodoanisole	Styrene	4	4-Methoxy- <i>trans</i> -stilbene	80	
12	4-lodoanisole	4-Methoxystyrene	5	4,4'-Dimethoxy-trans-stilbene	55	
13	4-lodoanisole	3,5-Dimethoxystyrene	5	3,4',5-Trimethoxy- <i>trans</i> -stilbene	60	
14	4-lodoanisole	3,4,5-Trimethoxystyrene	4	MeO OMe OMe OMe	50	
15	3,4,5-Trimethoxyiodobenzene	Styrene	7	OMe OMe	70	
16	3,4,5-Trimethoxyiodobenzene	OTBDMS	7	MeO OTBDMS OMe	49	
17	3,4,5-Trimethoxyiodobenzene	OMe	7	MeO OMe OMe	55	
18	3,4,5-Trimethoxyiodobenzene	Me Me	5	MeO MeO Me	45	

^aThe products were characterised by ¹H NMR, ¹³C NMR, IR and mass spectroscopy.

Scheme 3

inert atmosphere of nitrogen. Reactions were monitored by TLC. For the structural determination of the Heck reaction products, $^1\mathrm{H}$ NMR spectra were determined on a Bruker AC-200, 300, 400 or 500 spectrometer (200, 300, 400 or 500 MHz) with TMS as the internal standard. For *para* substituted benzene rings, which form an AA'XX', system, $J^*=J_{23}=J_{56}$. IR spectra were recorded on an ATI MATTSON RS-1- FT-IR spectrometer. MS spectra were determined on API-QSTAR Pulsar Mass Spectrometer. Melting points are uncorrected. Elemental analysis was done on FLASH EA 1112 SERIES-CHNS Analyser in the microanalysis section of the National Chemical Laboratory.

Synthesis and characterisation of the catalyst [Pd (2.5 wt%)/ZrO₂] Pd/ZrO₂ was prepared³⁷ by impregnating PdCl₂ from its aqueous solution on zirconia [prepared from zirconium nitrate by its hydrolysis with ammonium hydroxide, followed by washing and drying the zirconium hydroxide and then calcining it at 500 °C for 3 h] support by the incipient wetness impregnation technique. In a typical procedure, aq. PdCl₂ (2.08 ml from the stock solution made by dissolving 0.083 g PdCl₂ in 250 ml water) was taken in a 100 ml crucible. The crucible was kept on a boiling water bath. Zirconia (2 g) was added slowly into that solution. After impregnation, the wet catalyst mass was dried at 100°C for 4 h and then calcined in static air in a muffle furnace at 500°C for 3 h. The resulting catalyst mass was further treated with an ammoniacal solution of hydrazine on a water bath to transform the PdO (from the catalyst) to metallic Pd. The presence of a metallic Pd phase in the reduced catalyst was confirmed by X-ray diffraction. The TEM picture of these particles indicated the presence of metallic Pd with particle size $d = 15.9 \pm 0.5$ nm.

The characterisation of the catalyst was performed by means of X-ray diffraction (XRD) [using a Phillips Diffractometer (1730 series) with $\text{CuK}\alpha$ radiations], and transmission electron microscopy (TEM) (at 200 kV in a JEOL 1200 EX using a CCD camera).

General procedure for preparation of stilbenes

To 5 ml of DMF, were added 2.5 mmol of aryl halide, 6.8 mmol of alkene, 10% by weight (of aryl halide) of palladium on zirconia catalyst and 7.23 mmol of K_2CO_3 . The mixture was stirred at 140 °C under a nitrogen atmosphere for an appropriate time and the reaction was monitored by TLC. After completion of reaction, the catalyst was separated by filtration and washed with DMF (3 × 3 ml). Then the filtrate was diluted with water followed by extraction with ethyl acetate to give the crude product, which was subsequently purified by column chromatography on silica gel with petroleum ether/ethyl acetate as eluent.

General procedure for preparation of substituted styrenes used as starting materials

Ph₃P⁺–Me–Br (1.2 equiv, 10.9 g, 30 mmol) was taken in a two-neck round bottom flask. Dry tetrahydrofuran (100 ml) was added under a nitrogen atmosphere, the mixture was stirred for five minutes, *n*-butyllithium (1.2 equiv, 2.88 ml, 30.5 mmol) was added dropwise

at –78 °C (dry ice + acetone) over 15 minutes and the reaction mixture was stirred at 25 °C for 3 h. Then the substituted benzaldehyde (1 equiv, 5 g, 25.5 mmol) in dry tetrahydrofuran (50 ml) was added dropwise and stirred at 25 °C for 20 min. The reaction mixture was heated at 60 °C for 10 h and the reaction was monitored by TLC. After completion of reaction, the reaction mixture was quenched with methanol and the mixture was allowed to cool to room temperature. Methanol was removed under reduced pressure and the residue was extracted with ethyl acetate. The organic layer was washed with water followed by brine, dried over sodium sulfate and concentrated to dryness under reduced pressure using a rotary evaporator, The crude residue was purified by column chromatography using silica gel (petroleum ether: ethyl acetate as eluent) to collect the pure product.

Spectroscopic and analytical data

trans-*Stilbene*:^{40,41} White crystalline solid; m.p. 123 °C (Lit.,⁴² 124 °C); ¹H NMR (CDCl₃ + CCl₄ 200 MHz): δ 7.57 (d, J = 8 Hz, 4H), 7.47–7.25 (m, 6H), 7.16 (s, 2H); ¹³C NMR (CDCl₃ + CCl₄ 200 MHz): δ 137.3 (2C), 128.7 (4C), 127.6 (2C), 126.5 (4C); IR (chloroform,): 3019, 1600, 1497, 1452, 961, 758 cm⁻¹.

4-Methoxy-trans-cinnamic amide: ⁴³ Off-white powder; m.p. 199–200 °C (Lit., ⁴³ 199–201 °C); ¹H NMR (DMSO-d₆, 300 MHz): δ 7.33 (m, J^* = 8 Hz, 2H), 7.29 (br s, 1H), 7.20 (d, J = 15 Hz, 1H), 6.84 (br s, 1H), 6.80 (m, J^* = 8 Hz, 2H), 6.30 (d, J = 15 Hz, 1H), 3.61 (s, 3H); ¹³C NMR (DMSO-d₆, 300 MHz): δ 167.3, 160.5, 139.1, 129.2 (2C), 127.6, 119.9, 114.5 (2C), 55.4; mass (+ TOF): 178.11 [M + 1], 200.04 [M + Na]; Found: C, 67.70; H, 6.24; N, 7.80. Calc. for C₁₀H₁₁O₂N: C, 67.78; H, 6.20; N, 7.90%; IR (chloroform): 3461, 3358, 3020, 1662, 1602, 1513, 1425 cm⁻¹.

Methyl 4-methoxy-trans-*cinnamate*:⁴⁰ White solid; m.p. 86–87 °C (Lit., ⁴⁴ 87–89 °C); ¹H NMR (CDCl₃ + CCl₄, 300 MHz): δ 7.64 (d, J = 15 Hz, 1H), 7.47 (m, J * = 9 Hz, 2H), 6.89 (m, J * = 9 Hz, 2H), 6.30 (d, J = 15 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄, 200 MHz): δ 167.3, 161.2, 144.3, 129.6 (2C), 127.0, 115.2, 114.2 (2C), 55.0, 51.3; mass (+ TOF): 192.78 [M+], 214.67 [M + Na]; IR (chloroform): 2963, 1714, 1635, 1604, 1513, 1330, 1288, 1256, 1174, 1026, 984, 836, 755 cm⁻¹.

4-Methoxycinnamonitrile: $^{4.5}$ Faint yellow semisolid (Lit., 45 m.p. 61–62 °C); 1 H NMR (CDCl₃ + CCl₄, 200 MHz) for (E) isomer: δ 7.27 (m, J*=9 Hz, 2H), 7.19 (d, J=16 Hz, 1H), 6.80 (m, J*=9 Hz, 2H), 5.59 (d, J=16 Hz, 1H), 3.73 (s, 3H); 1 H NMR (CDCl₃ + CCl₄, 200 MHz) for (Z) isomer: δ 7.67 (d, J=9 Hz, 2H), 6.92 (d, J=12 Hz, 1H), 6.81 (d, J=9 Hz, 2H), 5.17 (d, J=12 Hz, 1H), 3.73 (s, 3H); Found: C, 75.48; H, 5.60; N, 8.74%. Calc. for C₁₀H₉ON: C, 75.46; H, 5.69; N, 8.79%; IR (chloroform): 2213 cm⁻¹.

Methyl 3,3-bis(4-methoxyphenyl)-acrylate:⁴⁴ Semisolid (Lit.,⁴⁶ oil); ¹H NMR (CDCl₃ + CCl₄, 200 MHz): δ 7.29 (m, J*=9 Hz, 2H), 7.20 (m, J*=9 Hz, 2H), 6.96 (m, J*=9 Hz, 2H), 6.88 (m, J*=9 Hz, 2H), 6.27 (s, 1H), 3.90 (s, 3H), 3.87 (s, 3H), 3.68 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄, 300 MHz): δ 165.9, 160.3, 159.2, 156.1, 133.4, 130.6, 130.4 (2C), 129.4 (2C), 113.8, 113.2 (2C), 112.7 (2C), 54.6, 54.5, 50.3; Found: C, 72.40; H, 6.00%. Calc. for C₁₈H₁₈O₄: C, 72.48; H, 6.04%; IR (chloroform): 3019, 1710, 1633, 1512, 1249, 116 cm⁻¹. 4-Acetyl-trans-stilbene: ^{41,47} White solid; m.p. 131 °C (Lit.,⁴⁷

4-Acetyl-trans-stilbene:^{41,4} White solid; m.p. $131^{\circ}C$ (Lit.,⁴⁷ $132^{\circ}C$); ${}^{1}H$ NMR (CDCl₃ + CCl₄, 200 MHz): δ 8.02 (m, J^* = 9 Hz, 2H), 7.66 (m, J^* = 9 Hz, 2H), 7.61(m, J^* = 9 Hz, 2H), 7.51-7.32 (m, 3H), 7.26 (d, J = 15 Hz, 1H), 7.19 (d, J = 15 Hz, 1H), 2.69 (s, 3H); ${}^{13}C$ NMR (CDCl₃ + CCl₄, 200 MHz): δ 196.9, 141.9, 136.7, 135.9, 131.4, 128.8 (2C), 128.7 (2C), 128.3, 127.4, 126.7 (2C), 126.4 (2C), 26.4; mass (+ TOF): 223.872 [M + 1], 245.810 [M + Na]; Found: C, 86.53; H, 6.30%. Calc. for C₁₆H₁₄O: C, 86.45; H, 6.34%; IR (chloroform): 3019, 1676, 1601, 1267, 964, 755 cm⁻¹.

Methyl 4-acetyl-trans-cinnamate:⁴⁸ Off-white solid; m.p. 104 °C (Lit.,⁴⁹ 105–106 °C); ¹H NMR (CDCl₃ + CCl₄ 200 MHz): δ 7.97 (m, J^* = 9 Hz, 2H), 7.70 (d, J = 16 Hz, 1H), 7.61 (m, J^* = 9 Hz, 2H), 6.52 (d, J = 16 Hz, 1H), 3.83 (s, 3H), 2.62 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄ 200 MHz): δ 196.3, 166.2, 142.7, 138.2, 137.6, 128.4 (2C), 127.7(2C), 119.9, 51.3, 26.1; Found: C, 70.47; H, 5.80%. Calc. for C₁₂H₁₂O₃: C, 70.57; H, 5.92%; IR (chloroform): 3020, 1717, 1684, 1266, 758 cm⁻¹.

3-Acetyl-trans-stilbene: ⁵⁰ Off-white solid; m.p. 78 °C (Lit., ⁵¹ 79–80 °C); ¹H NMR (CDCl₃ + CCl₄, 200 MHz): δ 8.05 (t, J = 2 Hz, 1H), 7.83–7.62 (m, 2H), 7.52–7.20 (m, 6H), 7.16 (d, J = 16 Hz, 1H), 7.07 (d, J = 16 Hz, 1H), 2.60 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄, 400 MHz): δ 197.7, 137.9, 137.6, 136.9, 130.8, 130.0, 128.9, 128.7 (2C), 128.0, 127.5, 127.4, 126.6 (2C), 126.2, 26.6; mass (+ TOF): 223.872 [M + 1], 245.810 [M + Na]; Found: C, 86.53; H, 6.30%. Calc. for C₁₆H₁₄O: C, 86.45; H, 6.34%; IR (chloroform): 3019, 1678, 1602, 1560, 1360, 1267, 963, 757 cm⁻¹.

4-Methoxy-trans-stilbene:41 Off-white solid; m.p. 137°C (Lit.,42 136°C); ¹H NMR (CDCl₃ + CCl₄ 200 MHz): δ 7.57–7.46 (m, 4H), 7.39 (t, J = 8 Hz, 2H), 7.31–7.22 (m, 1H), 7.12 (d, J = 16 Hz, 1H), 7.00 (d, J = 16 Hz, 1H), 6.94 (m, $J^* = 8$ Hz, 2H), 3.89 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄, 400 MHz): 159.4, 137.8, 130.3, 128.7(2C), 128.3, 127.7 (2C), 127.2, 126.7, 126.3 (2C), 114.2 (2C), 55.2; GCMS: 210; Found: C, 85.57; H, 6.70%. Calc. for C₁₅H₁₄O: C, 85.68; H, 6.71%; IR (chloroform): 3019, 1602, 1512, 929, 758 cm⁻¹

trans-1-Phenyl-2-(3,4,5-trimethoxyphenyl)ethene:52 White solid; m.p. 105 °C (Lit., 52 105–106 °C); ¹H NMR (CDCl₃ + CCl₄, 200 MHz): δ 7.45–7.38 (m, 2H), 7.32–7.15 (m, 3H), 6.96 (d, J= 16 Hz, 1H), 7.88 $(d, J = 16 \text{ Hz}, 1\text{H}), 6.64 \text{ (s, 2H)}, 3.84 \text{ (s, 6H)}, 3.79 \text{ (s, 3H)}; {}^{13}\text{C NMR}$ (CDCl₃ + CCl₄, 400 MHz): 153.4 (2C), 138.2, 137.2, 133.1, 128.8, 128.7 (2C), 128.2, 127.6, 126.4 (2C), 103.8 (2C), 60.9, 56.1 (2C); mass (+ TOF): 271.739 [M + 1], 293.765 [M + Na]; Found C, 75.44; H, 6.62%. Calc. for C₁₇H₁₈O₃: C, 75.55; H, 6.66%; IR (chloroform): 3019, 1584, 1420, 758 cm⁻¹

trans-1-(4-Methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene:52 White solid; m.p. 154°C (Lit.,52 152–155°C); ¹H NMR (CDCl₃ + CCl_4 200 MHz): δ 7.43 (m, $J^* = 9$ Hz, 2H), 6.97 (d, J = 16 Hz, 1H), $6.89 \text{ (m, } J^* = 9 \text{ Hz, 2H)}, 6.87 \text{ (d, } J = 16 \text{ Hz, 1H)}, 6.70 \text{ (s, 2H)}, 3.93 \text{ (s, 2H)}$ 6H), 3.87 (s, 3H), 3.84 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄, 400 MHz): 159.4, 153.5 (2C), 137.9, 133.5, 130.1, 127.8, 127.7 (2C), 126.7, 114.2 (2C), 103.6 (2C), 60.9, 56.2 (2C), 55.3; mass (+ TOF): 301.581 [M + 1], 323.590 [M + Na]; Found: C, 71.80; H, 6.60%. Calc. for C₁₈H₂₀O₄: C, 72.00; H, 6.66%; IR (chloroform): 3019, 1599, 1578, 1496, 1451, 961 cm⁻¹

4,4'-Dimethoxy-trans-stilbene:53 White solid; m.p. 210°C (Lit.,53 208–209 °C); ¹H NMR (CDCl₃ + CCl₄, 200 MHz): δ 7.41 (m, J^* = 10 Hz, 4H), 6.92 (s, 2H), 6.87 (m, J^* = 10 Hz, 4H), 3.84 (s, 6H); ¹³C NMR (CDCl₃ + CCl₄ 200 MHz): 159.0 (2C), 130.5 (2C), 127.4 (4C), 126.2 (2C), 114.1 (4C), 55.2 (2C); mass (+ TOF): 241.697[M+ 1], 263.546 [M + Na]; Found: C, 80.0; H, 6.60%. Calc. for C₁₆H₁₆O₂: C, 80.0; H, 6.66%; IR (chloroform): 3020, 1665, 1608, 1514 cm⁻¹

trans-1-(3-tert-Butyldimethylsilanyloxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene: Semisolid; ¹H NMR (CDCl₃ + CCl₄ 200 MHz): δ 7.07–6.79 (m, 5H), 6.70 (s, 2H), 3.92 (s, 6H), 3.86 (s, 3H), 3.83 (s, 3H), 1.04 (s, 9H), 0.19 (s, 6H); ¹³C NMR (CDCl₃) + CCl₄, 500 MHz): 153.4 (2C), 150.8, 145.2, 137.8, 133.4, 130.5, 127.9, 126.7, 120.5, 118.6, 112.0, 103.4 (2C), 60.9, 56.1 (2C), 55.4, 25.8 (3C), 18.5, 4.5 (2C).

trans-1-(3-Hydroxy-4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene:54 Off-white solid; m.p. 104°C(Lit.,54 102-104°C); ¹H NMR $(CDCl_3 + CCl_4, 200 \text{ MHz})$: δ 7.12 (d, J = 2 Hz, 1H), 6.95 (dd,J = 8 Hz, 2 Hz, 1H, 6.91 (d, J = 16 Hz, 1H), 6.84 (d, J = 16 Hz, 1H),6.82 (d, J = 8 Hz, 1H), 6.69 (s, 2H), 3.92 (s, 9H), 3.86 (s, 3H); 13 C NMR (CDCl₃ + CCl₄, 500 MHz): 153.1 (2C), 146.1, 145.6, 137.5, 133.0, 130.8, 127.5, 126.8, 118.8, 111.5, 110.3, 103.2 (2C), 60.6, 55.7 (2C), 55.6; mass (+ TOF): 317.565[M + 1], 339.581 [M + Na]; Found: C, 68.30; H, 6.39%. Calc. for C₁₈H₂₀O₅: C, 68.35; H, 6.32%.

3,4',5-Trimethoxy-trans-*stilbene*:⁵⁵ White solid; m.p. (Lit., 55 55–57°C); 1 H NMR (CDCl₃ + CCl₄, 200 MHz): δ 7.44 (m, J^* = 8 Hz, 2H), 7.04 (d, J = 16 Hz, 1H), 6.90 (d, J = 16 Hz, 1H), 6.89 (m, J^* = 8 Hz, 2H), 6.63 (d, J = 2 Hz, 2H), 6.36 (t, J = 2 Hz, 1H), 3.84 (s, 9H); ¹³C NMR (CDCl₃ + CCl₄, 400 MHz): 161.0 (2C), 159.4, 139.7, 130.0, 128.7, 127.8 (2C), 126.7, 114.1 (2C), 104.4 (2C), 99.7, 55.2 (3C); mass (+ TOF): 271.409 [M + 1], 293.426 [M + Na]; Found: C, 75.55; H, 6.71%. Calc. for C₁₇H₁₈O₃: C, 75.56; H, 6.67%; IR (chloroform): 3019, 1599, 758 cm⁻¹

trans-1-(3,5-Dimethoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene:55 White solid; m.p. 138°C (Lit.,55 136–138°C); ¹H NMR (CDCl₃ + CCl_4 200 MHz): δ 7.01 (d, J = 16 Hz, 1H), 6.90 (d, J = 16 Hz, 1H), 6.72 (s, 2H), 6.65 (d, J = 2 Hz, 2H), 6.38 (t, J = 2 Hz, 1H), 3.93 (s, 6H), 3.87 (s, 3H), 3.84 (s, 6H); 13 C NMR (CDCl $_3$ + CCl $_4$, 500 MHz): 161.1 (2C), 153.5 (2C), 139.2, 132.9 (2C), 129.2, 128.2, 104.6 (2C), 103.8 (2C), 100.1, 60.9, 56.1 (2C), 55.3 (2C); mass (+ TOF): 331.538 [M + 1], 353.536 [M + Na]; Found: C, 69.07; H, 6.70%. Calc. for C₁₉H₂₂O₅: C, 69.09; H, 6.67%.

trans-1-(3, 4-Dimethylphenyl)-2-(3,4,5-trimethoxyphenyl)-ethene:⁵⁶ Off-white solid; ¹H NMR (CDCl₃ + CCl₄, 200 MHz): δ 7.29 (d, J = 2 Hz, 1H), 7.24 (dd, J = 8 Hz, 2 Hz, 1H), 7.12 (d, J = 8 Hz, 1H), 7.01 (d, J = 16 Hz, 1H), 6.93 (d, J = 16 Hz, 1H), 6.72 (s, 2H), 3.93 (s, 6H), 3.88 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (CDCl₃ + CCl₄ 400 MHz): 153.4 (2C), 137.9, 136.6, 136.1, 134.9, 133.4, 129.9 128.2, 127.7, 127.5, 124.0, 103.6 (2C), 60.8, 56.1 (2C), 19.9, 19.6; mass (+ TOF): 299.890 [M + 1], 321.825 [M + Na], 337.756 [M + K]; Found: C, 76.46; H, 7.41%. Calc. for C₁₉H₂₂O₃: C, 76.48; H, 7.43%; IR (chloroform): 3020, 1653, 758 cm⁻¹.

DKD thanks the CSIR, New Delhi for Senior Research Fellowship.

Received 24 March 2008; accepted 6 July 2008 Paper 08/5175 doi: 10.3184/030823408X340807 Published online: 5 September 2008

References

- 1 G.R. Pettit, S.B. Singh, M.L. Niven, E. Hamel and J.M. Schmidt, J. Nat. Prod., 1987, 50, 119.
- K. Ohsumi, T. Tsuii, Y. Morinaga and K. Ohishi, EP 641767, 1995.
- M.S. Cushman and E. Hamel, WO 9323357, 1993.
- 4 G.R. Pettit, J.W. III Lippert, D.L. Herald, E. Hamel and R.K. Pettit, J. Nat. Prod., 2000, 63, 969.
- S.K. Lee, K.A. Nam, Y.H. Hoe, H.-Y. Min, E.-Y. Kim, H. Ko, S. Song, T. Lee and S. Kim, Arch. Pharm. Res, 2003, 26, 253.
- C.J. Lion, C.S. Matthews, M.F.G. Stevens and A.D. Westwell, J. Med. Chem., 2005, 48, 1292.
- A. Dikshit, K.P. Singh and P.K. Chaudhuri, Natl. Acad. Sci. Lett. (India), 1990, 13, 43.
- T. Hidetoshi, JP 95-344915, 1995.
- U. Azzena, M.V. Idini and L. Pilo, Synth. Commun., 2003, 33, 1309.
- C. Black, M. Girard, D. Guay and Z. Wang, WO 9728120, 1997.
- 11 M. Tsukamoto and M. Schlosser, Synlett., 1990, 10, 605.
- 12 M. Mintas, K. Jakopcic, L. Klasinc and Z. Naturforsch., B: Anorg. Chem. Org. Chem., 1977, 32B, 181.
- F-F. Karine, D. Lionel, D. Albert and N.F. Alfred, Coordination Chem. Rev., 2004, 248, 2323.
- R.S. Mali and P.G. Jagtap, Synth. Commun. 1991, 21, 841.
- Y. Zou, X. Zhang and H. Lin, CN 1539805, 2004; Chem. Abs. 143: 153145
- S.S. Al-Shihry, Molecules, 2004, 9, 658.
- M. Lakshmi Kantam, M. Roy, S. Roy, M.S. Subhas, B. Sreedhar and B.M. Choudary, Synlett, 2006, 14, 2266.
- J.J.E. Hardy, S. Hubert, D.J. Macquarrie and A.J. Wilson, Green Chemistry, 2004, 6, 53.
- R. Srivastava, N. Venkatathri, D. Srinivas and P. Ratnasamy, Tetrahedron Lett, 2003, 44, 3649.
- M. Dams, L. Drijikoningen, B. Pauwels, G. Van Tendeloo, D.E. De Vos and P.A. Jacobs, J. Catal., 2002, 209, 225.
- K. Köhler, M. Wagner and L. Djakovitch, Catal. Today, 2001, 66, 105.
- J.H. Clark, D.J. Macquarrie and E.B. Mubofu, Green Chem., 2000, 53.
- 23 S. Iyer and V. Thakur, J. Mol. Catal. A: Chem., 2000, 157, 275
- 24 H.L. Tidahy, S. Siffert, J.-F. Lamonier, E.A. Zhilinskaya, A. Aboukais, Z.-Y. Yuan, A. Vantomme, B.-L. Su, X. Canet, G. De Weireld, M. Frere, T.B. N'Guyen, J.M. Giraudon and G. Leclercq, Appl. Catal., A, 2006, 310, 61,
- M. Faticanti, N. Ciaffi, S. De Rossi, N. Ditaranto, P. Porta, L. Sabbatini and T.B.-Zacheo, Appl. Catal., B, 2005, 60, 73.
- K. Nomura, K. Noro, Y. Nakamura, H. Yoshida, A. Satsuma and T. Hattori, Catal. Lett. 1999, 58, 127.
- C.A. Muller, M. Maciejewski, R.A. Koeppel and A. Baiker, Catal. Today, 1999, 47, 47245.
- C.A. Muller, M. Maciejewski, R.A. Koeppel and A. Baiker, J. Catal., 1997, **166**, 36.
- J.M. Moreno, M.A. Aramendia, A. Maronas, J.M. Marinas and F.J. Urbano, Appl. Catal., B, 2007, 76, 34.
- J.M. Moreno, M.A. Aramendia, A. Maronas, J.M. Marina and F.J. Urbano, Appl. Catal., B, 2005, 59, 275.
- H.B. Borate, A.G. Gaikwad, S.R. Maujan, S.P. Sawargave and K.M. Kalal, Tetrahedron Lett., 2007, 48, 4869.
- V.H. Jadhav, D.K. Dumbre, V.B. Phapale, H.B. Borate and R.D. Wakharkar, Catal. Commun., 007, 8, 65.
- P.D. Shinde, V.A. Mahajan, H.B. Borate, V.H. Tillu, R. Bal, A. Chandwadkar and R.D. Wakharkar, J. Mol. Catal. A: Chem., 2004, **216**, 115.
- V.H. Tillu, V.H. Jadhav, H.B. Borate and R.D. Wakharkar, Arkivoc, 2004, xiv, 83.
- V.R. Choudhary, V.H. Tillu, V.S. Narkhede, H.B. Borate and R.D. Wakharkar, Catal. Commun., 2003, 4, 449.
- R.K. Ramchandani, B.S. Uphade, M.P. Vinod, R.D. Wakharkar, V.R. Choudhary and A. Sudalai, *Chem. Commun.*, 1997, 2071. V.R. Chaudhary and C. Samanta, *J. Catal.*, 2006, **238**, 28.
- A.I. Vogel, A text book of quantitative inorganic analysis, 3rd Edition, London, 1961.
- R.V. Stevens and K.F. Albizati, J. Org. Chem., 1985, 50, 632.
- 40 Z. Zhang and Z. Wang, J. Org. Chem., 2006, 71, 7485.
- R.K. Arvela, N.E. Leadbeater, M.S. Sangi, V.A. Williams, P. Granados and R.D. Singer, J. Org. Chem., 2005, 70, 161.
- O.H. Wheeler and H.N. Battle De Pabon, J. Org. Chem., 1965, 30, 1473.
- R. Imashiro and M. Seki, J. Org. Chem., 2004, 69, 4216.
- 44 D. Villemin and B. Nechab, J. Chem. Res. (S), 2000, 429.

- 45 X. Huang, L. Xie and H. Wu, J. Org. Chem., 1988, 53, 4862.
- 46 P.H.J. Ooms and W. Hartmann, Angew. Chem., Int. Ed. Engl., 1985, **24**, 976.
- A. Altomare, C. Carlini, M. Panattoni and R. Solaro, Macromolecules, 1984, 17, 2207
- 48 B. Karimi and D. Enders, Org. Lett., 2006, 8, 1237.
- 49 R. Bernini, S. Cacchi, G. Fabrizi, G. Forte, S. Niembro, F. Pleixats, A. Prastaro, R.M. Sebastian, R. Soler, M. Tristany and A. Vallribera, *Org*
- Lett., 2008, **10**, 561.

 Y. Ito, T. Kajita, K. Kunimoto and T. Matsuura, *J. Org. Chem.*, 1989, **54**, 587.
- 51 P.H. Gore and F.S. Kamonah, Synth Commun., 1979, 9, 377.
- 52 M. Cushman, D. Nagarathnam, D. Gopal, A.K. Chakraborti, C.M. Lin and E. Hamel, J. Med. Chem., 1991, 34, 2579.
- 53 Ki-B. Oh, Soo-H. Kim, J. Lee, Won-J. Cho, T. Lee and S. Kim, J. Med. Chem. 2004, 47, 2418.
- 54 K. Gaukroger, J.A. Hadfield, L.A. Hepworth, N.J. Lawrence and A.T. McGown, J. Org. Chem., 2001, 66, 8135.
- 55 S. Kim, H. Ko, J.E. Park, S. Jung, S.K. Lee and Y.J. Chun, J. Med. Chem.,
- 56 G. Hilt and C. Hengst, J. Org. Chem., 2007, 72, 7337.